Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.103
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Immunol ; 15: 1330373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596679

RESUMO

Introduction: Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods: To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results: I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion: These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.


Assuntos
Indóis , Monócitos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
2.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578518

RESUMO

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/metabolismo
3.
Front Immunol ; 15: 1343364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558799

RESUMO

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , Humanos , Microglia/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Pulmão/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
4.
Commun Biol ; 7(1): 427, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589700

RESUMO

Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.


Assuntos
Envelhecimento , Pulmão , Idoso , Humanos , Pulmão/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Homeostase
5.
J Aerosol Med Pulm Drug Deliv ; 37(2): 100-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640446

RESUMO

Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.


Assuntos
Lipossomos , Pneumonia , Humanos , Lipossomos/química , Lipossomos/metabolismo , Administração por Inalação , Pulmão/metabolismo , Fosfolipídeos , Sistemas de Liberação de Medicamentos
6.
Exp Lung Res ; 50(1): 106-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642025

RESUMO

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Assuntos
Lesão Pulmonar , Pneumonia , Enfisema Pulmonar , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lesão Pulmonar/metabolismo , Lipopolissacarídeos/efeitos adversos , Síndrome do Desconforto Respiratório/induzido quimicamente , Pulmão/metabolismo , Inflamação/tratamento farmacológico , Pneumonia/metabolismo , Autofagia
7.
PLoS One ; 19(4): e0300668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578780

RESUMO

Mast cells are effector cells known to contribute to allergic airway disease. When activated, mast cells release a broad spectrum of inflammatory mediators, including the mast cell-specific protease carboxypeptidase A3 (CPA3). The expression of CPA3 in the airway epithelium and lumen of asthma patients has been associated with a Th2-driven airway inflammation. However, the role of CPA3 in asthma is unclear and therefore, the aim of this study was to investigate the impact of CPA3 for the development and severity of allergic airway inflammation using knockout mice with a deletion in the Cpa3 gene. We used the ovalbumin (OVA)- and house-dust mite (HDM) induced murine asthma models, and monitored development of allergic airway inflammation. In the OVA model, mice were sensitized with OVA intraperitoneally at seven time points and challenged intranasally (i.n.) with OVA three times. HDM-treated mice were challenged i.n. twice weekly for three weeks. Both asthma protocols resulted in elevated airway hyperresponsiveness, increased number of eosinophils in bronchoalveolar lavage fluid, increased peribronchial mast cell degranulation, goblet cell hyperplasia, thickening of airway smooth muscle layer, increased expression of IL-33 and increased production of allergen-specific IgE in allergen-exposed mice as compared to mocktreated mice. However, increased number of peribronchial mast cells was only seen in the HDM asthma model. The asthma-like responses in Cpa3-/- mice were similar as in wild type mice, regardless of the asthma protocol used. Our results demonstrated that the absence of a functional Cpa3 gene had no effect on several symptoms of asthma in two different mouse models. This suggest that CPA3 is dispensable for development of allergic airway inflammation in acute models of asthma in mice.


Assuntos
Asma , Mastócitos , Animais , Camundongos , Alérgenos/metabolismo , Líquido da Lavagem Broncoalveolar , Carboxipeptidases/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo
8.
JCO Precis Oncol ; 8: e2300495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635931

RESUMO

PURPOSE: High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive cancer with a complex biology. We aimed to explore the prognostic value of genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in HGNEC and to establish a novel prognostic model. MATERIALS AND METHODS: We retrospectively enrolled 191 patients with histologically confirmed HGNEC of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry (IHC; N = 191) and comprehensive cancer panel sequencing (n = 102). Clinical and genetic data were used to develop an integrated Cox hazards model. RESULTS: Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%) patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an integrated Cox hazard model, our data set included information from 357 gene mutations and 19 clinical profiles. When the targeted mutation profiles were combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1, IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prognostic factors for survival. The integrated Cox hazard model, which combines mutation profiles with a baseline model, outperformed the baseline model (incremental area under the curve 0.84 v 0.78; P = 8.79e-12). The integrated model stratified patients into high- and low-risk groups with significantly different disease-free and overall survival (integrated model: hazard ratio, 7.14 [95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01). CONCLUSION: We introduced a new prognostic model for HGNEC that combines genetic and clinical data. The integrated Cox hazard model outperformed the baseline model in predicting the survival of patients with HGNEC.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Humanos , Prognóstico , Poli(ADP-Ribose) Polimerase-1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Carcinoma Neuroendócrino/genética , Pulmão/metabolismo , Pulmão/patologia , Genômica
9.
PeerJ ; 12: e17123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560469

RESUMO

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Assuntos
Eritropoetina , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Epoetina alfa/metabolismo , Eritropoetina/farmacologia , Isquemia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
10.
Respir Res ; 25(1): 154, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566093

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/efeitos adversos , Células Epiteliais/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo
11.
Respir Res ; 25(1): 153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566174

RESUMO

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , beta Catenina , Adulto , Animais , Humanos , beta Catenina/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Via de Sinalização Wnt , Bleomicina/toxicidade
12.
BMC Genomics ; 25(1): 339, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575860

RESUMO

BACKGROUND: Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS: This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS: The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.


Assuntos
Fibrose Pulmonar , Animais , Humanos , Cetáceos/genética , Cetáceos/metabolismo , Pulmão/metabolismo , Mamíferos/metabolismo , Oxigênio/metabolismo
13.
Exp Biol Med (Maywood) ; 249: 10040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577707

RESUMO

Regulatory T cells (Tregs) constitute a specialized subset of T cells with dual immunoregulatory and modulatory functions. Recent studies have reported that Tregs mediate immune responses and regulate the development and repair processes in non-lymphoid tissues, including bone and cardiac muscle. Additionally, Tregs facilitate the repair and regeneration of damaged lung tissues. However, limited studies have examined the role of Tregs in pulmonary development. This study aimed to evaluate the role of Tregs in pulmonary development by investigating the dynamic alterations in Tregs and their hallmark cellular factor Forkhead box P3 (Foxp3) at various stages of murine lung development and establishing a murine model of anti-CD25 antibody-induced Treg depletion. During the early stages of murine lung development, especially the canalicular and saccular stages, the levels of Treg abundance and expression of Foxp3 and transforming growth factor-ß (TGF-ß) were upregulated. This coincided with the proliferation period of alveolar epithelial cells and vascular endothelial cells, indicating an adaptation to the dynamic lung developmental processes. Furthermore, the depletion of Tregs disrupted lung tissue morphology and downregulated lung development-related factors, such as surfactant protein C (SFTPC), vascular endothelial growth factor A (VEGFA) and platelet endothelial cell adhesion molecule-1 (PECAM1/CD31). These findings suggest that Tregs promote murine lung development.


Assuntos
Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Fatores de Transcrição Forkhead/metabolismo
14.
Commun Biol ; 7(1): 442, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600349

RESUMO

Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.


Assuntos
Citocromo P-450 CYP1A1 , Receptores de Hidrocarboneto Arílico , Camundongos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Luciferases/genética , Fígado/metabolismo , Pulmão/metabolismo
15.
Respir Res ; 25(1): 160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600524

RESUMO

BACKGROUND: No effective therapies for pulmonary fibrosis (PF) exist because of the unclear molecular pathogenesis and the lack of effective therapeutic targets. Zinc finger protein 451 (ZNF451), a transcriptional regulator, plays crucial roles in the pathogenesis of several diseases. However, its expression pattern and function in PF remain unknown. This study was designed to investigate the role of ZNF451 in the pathogenesis of lung fibrosis. METHODS: GEO dataset analysis, RT‒PCR, and immunoblot assays were used to examine the expression of ZNF451 in PF; ZNF451 knockout mice and ZNF451-overexpressing lentivirus were used to determine the importance of ZNF451 in PF progression; and migration assays, immunofluorescence staining, and RNA-seq analysis were used for mechanistic studies. RESULTS: ZNF451 is downregulated and negatively associated with disease severity in PF. Compared with wild-type (WT) mice, ZNF451 knockout mice exhibited much more serious PF changes. However, ZNF451 overexpression protects mice from BLM-induced pulmonary fibrosis. Mechanistically, ZNF451 downregulation triggers fibroblast activation by increasing the expression of PDGFB and subsequently activating PI3K/Akt signaling. CONCLUSION: These findings uncover a critical role of ZNF451 in PF progression and introduce a novel regulatory mechanism of ZNF451 in fibroblast activation. Our study suggests that ZNF451 serves as a potential therapeutic target for PF and that strategies aimed at increasing ZNF451 expression may be promising therapeutic approaches for PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Pulmão/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais
16.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
17.
Sci Rep ; 14(1): 8796, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627574

RESUMO

Lung transplantation stands as a vital treatment for severe lung diseases, primarily sourcing organs from donors with brain death (BD). This research delved into the potential anti-inflammatory effects of thalidomide in rats with BD-induced lung complications. In this study twenty-four Wistar rats were divided into three groups: the control (CTR), brain death (BD) and brain death + thalidomide (TLD) groups. Post specific procedures, a 360 min monitoring period ensued. Comprehensive analyses of blood and heart-lung samples were conducted. Elevated IL-6 levels characterized both BD and TLD groups relative to the CTR (p = 0.0067 and p = 0.0137). Furthermore, TNF-α levels were notably higher in the BD group than both CTR and TLD (p = 0.0152 and p = 0.0495). Additionally, IL-1ß concentrations were significantly pronounced in both BD and TLD compared to CTR, with the BD group surpassing TLD (p = 0.0256). Immunohistochemical assessments revealed augmented NF-ĸB expression in the BD group in comparison to both CTR and TLD (p = 0.0006 and p = 0.0005). With this study we can conclude that BD induced acute pulmonary inflammation, whereas thalidomide manifested a notable capability in diminishing key inflammatory markers, indicating its prospective therapeutic significance in lung transplantation scenarios.


Assuntos
Morte Encefálica , Talidomida , Ratos , Animais , Talidomida/farmacologia , Ratos Wistar , Morte Encefálica/metabolismo , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia
18.
Proc Natl Acad Sci U S A ; 121(16): e2400077121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598345

RESUMO

Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.


Assuntos
Células Epiteliais Alveolares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Dipeptidil Peptidase 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmão/metabolismo , Modelos Animais de Doenças
19.
PLoS One ; 19(4): e0299495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635535

RESUMO

This study evaluated the effect of 24-week Taichi training and Taichi plus resistance band training on pulmonary diffusion capacity and glycemic control in patients with Type 2 diabetes mellitus (T2DM). Forty-eight patients with T2DM were randomly divided into three groups: Group A-Taichi training: practiced Taichi 60 min/day, 6 days/week for 24 weeks; Group B-Taichi plus resistance band training: practiced 60-min Taichi 4 days/week plus 60-min resistance band training 2 days/week for 24 weeks; and Group C-controls: maintaining their daily lifestyles. Stepwise multiple regression analysis was applied to predict diffusion capacity of the lungs for carbon monoxide (DLCO) by fasting blood glucose, insulin, glycosylated hemoglobin (HbA1c), tumour necrosis factor alpha (TNF-α), von Willebrand Factor (vWF), interleukin-6 (IL-6), intercellular adhesion molecule 1 (ICAM-1), endothelial nitric oxide synthase (eNOS), nitric oxide (NO), endothelin-1 (ET-1), vascular endothelial growth factor, and prostaglandin I-2. Taichi with or without resistance band training significantly improved DLCO, increased insulin sensitivity, eNOS and NO, and reduced fasting blood glucose, insulin, HbA1c, TNF-α, vWF, IL-6, ICAM-1, and ET-1. There was no change in any of these variables in the control group. DLCO was significantly predicted (R2 = 0.82) by insulin sensitivity (standard-ß = 0.415, P<0.001), eNOS (standard-ß = 0.128, P = 0.017), TNF-α (standard-ß = -0.259, P = 0.001), vWF (standard-ß = -0.201, P = 0.007), and IL-6 (standard-ß = -0.175, P = 0.032) in patients with T2DM. The impact of insulin sensitivity was the most important predictor for the variation of DLCO based on the multiple regression modeling. This study demonstrates that 24-week Taichi training and Taichi plus resistance band training effectively improve pulmonary diffusion capacity and blood glycemic control in patients with T2DM. Variation of DLCO is explained by improved insulin sensitivity and endothelial function, and reduced inflammatory markers, including TNF-α, vWF, and IL-6.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Molécula 1 de Adesão Intercelular , Glicemia/metabolismo , Hemoglobinas Glicadas , Interleucina-6 , Fator de Necrose Tumoral alfa , Controle Glicêmico , Fator de von Willebrand , Fator A de Crescimento do Endotélio Vascular , Insulina , Pulmão/metabolismo
20.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637808

RESUMO

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA